O-glycosylation is essential for intracellular targeting of synaptotagmins I and II in non-neuronal specialized secretory cells.
نویسندگان
چکیده
We have examined the trafficking of synaptotagmin (Syt) I and II in the mast cell line rat basophilic leukemia (RBL-2H3). We demonstrate that both Syt I and Syt II travel through the plasma membrane and require endocytosis to reach their final intracellular localization. However, N- or C-terminal tagging of Syt II, but not of Syt I, prevents its internalization, trapping the tagged protein at the plasma membrane. Furthermore, a chimeric protein comprising a tagged luminal domain of Syt II fused with the remaining domains of Syt I also localizes to the plasma membrane, whereas a chimera consisting of tagged luminal domain of Syt I fused with Syt II colocalizes with Syt I on secretory granules. We also show that endocytosis of both Syt I and Syt II is strictly dependent on O-glycosylation processing, whereby O-glycosylation mutants of either protein fail to internalize and remain at the plasma membrane. Our results indicate that the luminal domains of Syt I and Syt II govern their internalization capacity from the plasma membrane and identify O-glycosylation as playing a crucial role in Syt trafficking in non-neuronal secretory cells.
منابع مشابه
N-Glycosylation Is Essential for Vesicular Targeting of Synaptotagmin 1
Synaptotagmins 1 and 7 are candidate Ca(2+) sensors for exocytosis localized to synaptic vesicles and plasma membranes, respectively. We now show that the N-terminal intraluminal sequence of synaptotagmin 1, when transplanted onto synaptotagmin 7, redirects synaptotagmin 7 from the plasma membrane to secretory vesicles. Conversely, mutation of the N-terminal N-glycosylation site of synaptotagmi...
متن کاملEffects of different culture media on optimization of primary neuronal cell culture for in vitro models assay
Background: In vitro model studies are becoming increasingly popular for experimental research designs. They include isolation and expansion of cells of a particular tissue, such as the nervous tissue which contributes to understanding the underlying mechanisms in many pathologies. It enables the scrutinization of intracellular signaling pathways responsible for cell death. OBJECTIVES: In the ...
متن کاملO-31: Mifepristone Acts as Progesterone Antagonistof Non-Genomic Responses but InhibitsPhytohemagglutinin Induced Proliferationin Human T Cells
Background: Progesterone is an endogenous immunomodulator that suppresses T cell activation during pregnancy. The stimulation of membrane progesterone receptors (mPRs) would seem to be the cause of rapid non-genomic responses in human peripheral T cells, such as an elevation of intracellular calcium ([Ca2+] i) and decreased intracellular pH (pHi). Mifepristoneimmune cells compared with progeste...
متن کاملThe exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth.
During neuronal development, vesicles are targeted to the growth cone to promote neurite outgrowth and synaptogenesis. The Exocyst complex is an essential macromolecule in the secretory pathway that may play a role in vesicle targeting. Although it has been shown that this complex is enriched in rat brain, the molecular mechanism underlying its function is largely unknown. Here, we report that ...
متن کاملThe Relationship of Secretion and Activity of Recombinant Factor IX with N-Glycosylation
Background: Human coagulation factor IX (hFIX) is a glycoprotein with two N-glycosylation sites at the activation peptide. Since the activation peptide is removed in mature hFIX, the exact role of N-glycosylation is unclear. To investigate the role of N-glycosylation in the secretion and activity of hFIX, we inhibited N-glycosylation by tunicamycin in the stable Human Embryonic Kidney (HEK)- c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 118 Pt 7 شماره
صفحات -
تاریخ انتشار 2005